

Figure 1. Left: Stereoview representation of the structure of 7 , showing binding of the cluster and the aaaaab conformation of legs ($\bullet=\mathrm{Fe}$). Right: Structure of the cluster portion of 7. Mean values (\AA, deg) of selected structural parameters: $\mathrm{Fe}-\mathrm{Cl}, 2.226$ (2); $\mathrm{Fe} \cdot \mathrm{F}$. $\mathrm{Fe}, 2.766$ (1); $\mathrm{Fe}-\mathrm{S}, 2.287$ (2); $\mathrm{Fe}-\mathrm{S}(\mathrm{C}) .2 .261$ (2); S-C, 1.772 (6); S-Fe-S, 103.64 (9); Fe-S-Fe, 74.41 (7).
is $3.74 \AA$ from the centroid of the central ring, $\sim 0.3 \AA$ beyond van der Waals contact. Cluster dimensions are normal, and the only apparent ligand structural effect is suppression of the usual core tetragonal distortion of $\left[\mathrm{Fe}_{4} \mathrm{~S}_{4} \mathrm{~L}_{4}\right]^{2-.}$. The ligand has the unprecedented $a a a a a b$ conformation.

In DMF solution cluster 7 exhibits $\lambda_{\max }\left(\epsilon_{\mathrm{M}}\right)=480(\mathrm{sh}, 10000)$ and two one-electron reductions at -1.03 (reversible) and -1.80 V (irreversible) vs. SCE. A potential separation $\Delta E \approx 0.75 \mathrm{~V}$ assures the presence of a $\mathrm{Fe}_{4} \mathrm{~S}_{4}$ cluster. ${ }^{17}$ Further, 7 shows one set of ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR signals ${ }^{18}$ indicative of a single species with effective trigonal symmetry. In contrast, $\left(\mathrm{Ph}_{4} \mathrm{P}\right)_{2}\left[\mathrm{Fe}_{4} \mathrm{~S}_{4}\right.$ $\left.(\mathrm{SPh})_{2} \mathrm{Cl}_{2}\right]^{19}$ displays four meta H signals in $\mathrm{CD}_{3} \mathrm{CN}(8.1-8.4$ $\mathrm{ppm}),{ }^{12 a}$ consistent with statistical disproportionation to $\left[\mathrm{Fe}_{4} \mathrm{~S}_{4}{ }^{-}\right.$ (SPh) $\left.)_{4-n} \mathrm{Cl}_{n}\right]^{2-}(n=0-3)$. Reactions $1-6\left(\mathrm{R}=2,6-\mathrm{C}_{6} \mathrm{H}_{3} \mathrm{Cl}_{2}\right)$ in situ, conducted stoichiometrically and monitored by ${ }^{1} \mathrm{H}$ NMR, ${ }^{12 \mathrm{a}}$ have been shown to proceed with conversions of $>90 \%$. Thiolate groups are readily detected by their characteristic shifts: 13.2 ppm $\left(\mathrm{SCH}_{2}\right)$ in 6 and $8.34 \mathrm{ppm}(m e t a \mathrm{H})$ in 8 . The spectra of 6 and 8 also consist of a single set of signals. Given the sensitivity of isotropically shifted cluster resonances to structural differences, ${ }^{20}$ we conclude that in solution 6-8 possess trigonal symmetry. This requires a conformational change of two R_{1} legs to generate ababab. Rotational barriers may be low inasmuch as $\mathrm{C}_{6}(\mathrm{~S}-2-$ $\left.\mathrm{MeC}_{6} \mathrm{H}_{4}\right)_{6}(9$, two conformers: $a a b b a b+a a a b b b)$ and $4(a a b a a b)$, whose indicated conformations have been established by X-ray crystallography, ${ }^{21}$ show ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra ($\mathrm{CD}_{2} \mathrm{Cl}_{2}$, $210-300 \mathrm{~K}$) consistent with trigonal symmetry.

These results demonstrate that a $\mathrm{Fe}_{4} \mathrm{~S}_{4}$ cluster can be mounted on the semirigid tridentate ligand 5 with cavity occupancy and that the differentiated subsite is susceptible to high-yield substitution reacitons. These are the first subsite-specific reactions of synthetic $\mathrm{Fe}_{4} \mathrm{~S}_{4}$ clusters. Cluster 7 in particular appears to be a potentially suitable vehicle for expression of the protein structural and reactivity features noted at the outset. Ligand 5 should accommodate the $\mathrm{Fe}_{3} \mathrm{~S}_{4}$ cubane fragment (conceivably obtainable by oxidative removal of the unique subsite) proposed for protein sites $^{22.23}$ and is designed so as not to stabilize the alternative linear $\mathrm{Fe}_{3}\left(\mu_{2}-\mathrm{S}\right)_{4}$ unit found in the synthetic clusters $\left[\mathrm{Fe}_{3} \mathrm{~S}_{4} \mathrm{SR}_{4}\right]^{3-24}$ and

[^0]the unfolded form of aconitase. ${ }^{25}$ These matters will be the subjects of future reports.

Acknowledgment. This research was supported by National Institutes of Health Grant GM 28856. X-ray diffraction equipment was obtained by NSF Grant CHE 80-00670 and NIH Grant 1 S10 RR 02247 and NMR equipment by NSF Grant 84-10774.

Supplementary Material Available: Tables of atom coordinates and thermal parameters for $\left(\mathrm{Ph}_{4} \mathrm{P}\right)_{2}\left[\mathrm{Fe}_{4} \mathrm{~S}_{4}\left(\mathrm{~L} \cdot \mathrm{~S}_{3}\right) \mathrm{Cl}\right]$ (8 pages). Ordering information is given on any current masthead page.
(25) Kennedy, M. C.; Kent, T. A.; Emptage, M.; Merkle, M.; Beinert, H.; Münck, E. J. Biol. Chem. 1984, 259, 14463.

$\mathrm{Et}_{\mathbf{3}} \mathrm{B}$-Induced Radical Addition of $\mathrm{R}_{3} \mathrm{SnH}$ to Acetylenes and Its Application to Cyclization Reaction

Kyoko Nozaki, Koichiro Oshima,* and Kiitiro Utimoto

Department of Industrial Chemistry, Faculty of Engineering Kyoto University, Yoshida, Kyoto 606, Japan

Received January 12, 1987
The cyclization of vinyl acetylene to methylene-substituted five-membered rings has been described by Stork and Mook. ${ }^{1}$ We have studied this reaction further and report that trialkylborane mediates a facile addition of $\mathrm{R}_{3} \mathrm{SnH}$ to an acetylenic bond to give vinylstannane regioselectively, and this new method is applied to vinyl radical cyclization reactions ${ }^{2.3}$ effectively.

The hydrostannation of acetylenes ${ }^{4}$ takes place readily either in the absence of a catalyst or in the presence of a catalytic amount of free radical initiator such as azobisisobutyronitrile (AIBN), ${ }^{5}$ but these reaction conditions (without solvent, heat to $80-100^{\circ} \mathrm{C}$)

[^1]Table 1. Triethylborane-Induced Hydrostannation of Acetylenes ${ }^{\boldsymbol{a}}$

I
II

entry	substrate		reagent	reaction time, h	Y, \%	product ratio I:II
	R^{1}	R^{2}				
1	$n-\mathrm{C}_{10} \mathrm{H}_{21}$	H	$\mathrm{Ph}_{3} \mathrm{SnH}$	0.3	80	79:21
2			$n-\mathrm{Bu}_{3} \mathrm{SnH}$	2.0	40	80:20
3	$\mathrm{PhCH}_{2} \mathrm{OCH}_{2} \mathrm{CH}_{2}$	H	$\mathrm{Ph}_{3} \mathrm{SnH}$	0.3	79	69:31
4			$n-\mathrm{Bu}_{3} \mathrm{SnH}$	10	71	90:10
5	THPOCH $2 \mathrm{CH}_{2}$	H	$\mathrm{Ph}_{3} \mathrm{SnH}$	0.3	81	80:20
6			$n-\mathrm{Bu}_{3} \mathrm{SnH}$	2.0	49	90:10
7	$\mathrm{HOCH}_{2} \mathrm{CH}_{2}$	H	$\mathrm{Ph}_{3} \mathrm{SnH}$	0.3	87	82:18
8			$n-\mathrm{Bu}_{3} \mathrm{SnH}$	2.0	40	69:31
9	Ph	H	$\mathrm{Ph}_{3} \mathrm{SnH}$	0.3	75	100:0
10	$\mathrm{Me}_{3} \mathrm{Si}$	H	$\mathrm{Ph}_{3} \mathrm{SnH}$	0.3	83^{b}	100:0
11	$n-\mathrm{C}_{5} \mathrm{H}_{11}$	$n-\mathrm{C}_{5} \mathrm{H}_{11}$	$\mathrm{Ph}_{3} \mathrm{SnH}$	10	$86^{\text {c }}$	0:100
12	Ph	Me	$\mathrm{Ph}_{3} \mathrm{SnH}$	1.0	74	25:75

${ }^{a}$ Acetylene (1.0 mmol), $\mathrm{R}_{3} \mathrm{SnH}(1.2 \mathrm{mmol})$ and $\mathrm{Et}_{3} \mathrm{~B}(0.1 \mathrm{mmol})$ were employed, ${ }^{b}$ Excess of (trimethylsilyl)acetylene (5.0 mmol) and $\mathrm{Ph}_{3} \mathrm{SnH}$ (1.0 mmol) was employed, and the yield was based on $\mathrm{Ph}_{3} \mathrm{SnH}$. ${ }^{c}$ Excess of $\mathrm{Ph}_{3} \mathrm{SnH}(5.0 \mathrm{mmol})$ was used.
may not always be suitable for an intramolecular radical cyclization reaction. ${ }^{3 f}$

We have found that an addition of a catalytic amount of $\mathrm{Et}_{3} \mathrm{~B}$ to a solution of acetylenic compound and $\mathrm{Ph}_{3} \mathrm{SnH}$ (or $n-\mathrm{Bu}_{3} \mathrm{SnH}$) in toluene promotes the formation of vinylstannanes effectively. A typical procedure is as follows. A hexane solution of $\mathrm{Et}_{3} \mathrm{~B}^{6}$ (1.0 $\mathrm{M}, 0.1 \mathrm{~mL}, 0.1 \mathrm{mmol}$) was added to a solution of 1 -dodecyne (0.17 $\mathrm{g}, 1.0 \mathrm{mmol})$ and triphenyltin hydride $(0.42 \mathrm{~g}, 1.2 \mathrm{mmol})$ in toluene $(8.0 \mathrm{~mL})$ at $25^{\circ} \mathrm{C}$ under an argon atmosphere. After stirring for 20 min at $25^{\circ} \mathrm{C}$, the reaction mixture was poured into water and extracted with ethyl acetate 3 times. Combined organic layers were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo. The residual oil was submitted to preparative TLC on silica gel to give vinylstannane as a mixture of (E) - and (Z) -1-(triphenylstannyl)-1-dodecene $(0.41 \mathrm{~g}, 80 \%$ yield, $E / Z=79 / 21)$. The representative results are summarized in Table I. Triphenylstannyl group adds to terminal acetylenic carbon regioselectively but nonstereoselectively to give a mixture of (E) - and (Z)-1-(triphenylstannyl)-1-alkenes. The E / Z ratios of double bonds were generally $8 / 2$ to $7 / 3^{7}$ and were not affected by solvents. The ratios of (E)-1-(triphenylstannyl)-1-dodecene and the Z isomer were $79 / 21,80 / 20,77 / 23$, and $63 / 37$ in toluene, benzene, $\mathrm{Et}_{2} \mathrm{O}$, and THF, respectively. Phenylacetylene and (trimethylsilyl)acetylene provided (E)-vinylstannanes exclusively. An addition of $n-\mathrm{Bu}_{3} \mathrm{SnH}$ had longer reaction time and gave the corresponding vinylstannanes in poor yields.

The reaction was successfully applied to the radical cyclization reaction shown in eq 1-4. ${ }^{8}$ The concentration of $\mathrm{Ph}_{3} \mathrm{SnH}$ affected the yield and distribution of the products. Uncyclized product

[^2]
Scheme I

i) $\mathrm{SeO}_{2} / \mathrm{EtOH}-\mathrm{H}_{2} \mathrm{O}$ 11) Dihydropyran, Ts OH iii) $\mathrm{Me}_{3} \mathrm{SiC}=\mathrm{CLi}$ iv) $\mathrm{KF} / \mathrm{DMSO}$ v) $\mathrm{Pr}_{3} \mathrm{SnH}_{2} \mathrm{Et}_{3} \mathrm{~B}$ vil $\mathrm{CrO}_{3} \cdot 2 \mathrm{Py}$ vil) ${ }^{\mathrm{i}} \mathrm{Bu}_{2} \mathrm{AlH}$ viii) $\mathrm{Ts} \mathrm{OH} / \mathrm{MeOH}$
was obtained in addition to the cyclized desired compound in a higher concentration. For instance, the compound 1a gave cyclized product 2 a exclusively at 0.012 M concentration of $\mathrm{Ph}_{3} \mathrm{SnH}$, while, at 0.30 M concentration, $\mathbf{2 a}$ and uncyclized product $\mathrm{Me}_{2} \mathrm{C}=\mathrm{CHCH}_{2} \mathrm{CH}_{2} \mathrm{C}(\mathrm{OH}) \mathrm{MeCH}=\mathrm{CHSnPh}_{3}$ were obtained in 60% and 15% yield, respectively. ${ }^{9}$ It is worth noting that the serious limitation, nonstereoselectivity shown in Table I, was overcome in these cyclization reactions and the cyclized products consist of only Z isomer without contamination by the other stereoisomer. ${ }^{10}$ The compound $4 d^{11}$ derived from $4 a$ by de-
(9) Heating a mixture of 1 a and $\mathrm{Ph}_{3} \mathrm{SnH}$ without solvent at $80^{\circ} \mathrm{C}$ for 15 h gave a complex mixture consisting of (E) - and (Z)-vinylstannanes $\left(\mathrm{Me}_{2} \mathrm{C}=\mathrm{CHCH}_{2} \mathrm{CH}_{2} \mathrm{C}(\mathrm{OH}) \mathrm{MeCH}=\mathrm{CHSnPh}_{3}, 46 \%\right)$, regioisomer $\left(\mathrm{Me}_{2} \mathrm{C}=\mathrm{CHCH}_{2} \mathrm{CH}_{2} \mathrm{C}(\mathrm{OH}) \mathrm{MeC}\left(\mathrm{SnPh}_{3}\right)=\mathrm{CH}_{2}, 9 \%\right)$, and the desired cyclized product 2 a (38% yield).
(10) The compounds $\mathbf{4 a}, \mathbf{4 b}, 6$, and 8 showed one signal each for olefinic protons on ${ }^{1} \mathrm{H}$ NMR spectra and also on ${ }^{119} \mathrm{Sn}$ NMR. The formation of a single isomer may be explained by assuming the equilibrium between A and B. The intermediate A cyclized more readily than B.

(11) The physical data for the compounds 4 a and 4 d are as follows. 4a: bp $165^{\circ} \mathrm{C}$ (bath temp, 0.2 torr); IR (neat) $3012,2922,1429,1074,726,697$ $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right) \delta 0.96(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 3 \mathrm{H}), 1.03(\mathrm{~d}, J$ $=6.5 \mathrm{~Hz}, 3 \mathrm{H}), 2.05(\mathrm{~m}, 1 \mathrm{H}), 2.73(\mathrm{~m}, 1 \mathrm{H}), 3.82(\mathrm{dd}, J=5.5,9.0 \mathrm{~Hz}, 1$ $\mathrm{H}), 3.95(\mathrm{dd}, J=7.5,9.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.08(\mathrm{brs}, 2 \mathrm{H}), 6.12(\mathrm{~m}, 1 \mathrm{H}), 7.3-7.8$ (m, 15 H); ${ }^{119} \mathrm{Sn}$ NMR $\delta-142.9$. Anal. Calcd for $\mathrm{C}_{26} \mathrm{H}_{28} \mathrm{OSn}: \mathrm{C}, 65.72$; $\mathrm{H}, 5.94$. Found: C, $65.55 ; \mathrm{H}, 5.82$. 4d: ${ }^{1} \mathrm{H} N \mathrm{NR}\left(\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right) \delta 0.88$ $(\mathrm{d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 0.95(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.84(\mathrm{~m}, 1 \mathrm{H}), 2.53(\mathrm{~m}, 1$ $\mathrm{H}), 3.80(\mathrm{dd}, J=5.0,9.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.92(\mathrm{dd}, J=7.0,9.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.95$ (m, 1 H$), 5.00(\mathrm{~m}, 1 \mathrm{H})$.

$$
\begin{aligned}
a: R & =H \quad R^{1}=R^{2}=M e \\
X & =\operatorname{SnPr}_{3} \quad Y=H \quad(Y, 78 \%)
\end{aligned}
$$

$$
\text { D: } R=H \quad R^{1}=H \quad R^{2}={ }^{n} C_{3} H_{7}
$$

$$
X=\mathrm{SnPh}_{3} \quad Y=H \quad(Y, 85 \%)
$$

$$
C: R=n_{B U} R^{1}=R^{2}=M e
$$

$$
X=\mathrm{SnPh}_{3} \quad Y=H \quad(Y .69 \%, 64 / 36)
$$

$$
d: R=H \quad R^{1}=R^{2}=M e \quad X=H O \quad Y=H b
$$

$$
e: R=H \quad R^{1}=R^{2}=\operatorname{Me} \quad X=S n P r_{z} ; \quad Y=D
$$

$$
f: R=H \quad R^{1}=R^{2}=M e \quad X=H \quad Y=D
$$

stannylation $\left(n-\mathrm{BuLi} /\right.$ THF, $\left.\mathrm{H}_{2} \mathrm{O}\right){ }^{12}$ showed ${ }^{1} \mathrm{H}$ NMR signals at $\delta 5.00(\mathrm{~m}, \mathrm{Ha})$ and $4.95(\mathrm{~m}, \mathrm{Hb})$. Treatment of the deuteriated acetylene 3a ($\mathrm{DC} \equiv \mathrm{CCH}_{2} \mathrm{OCH}_{2} \mathrm{CH}=\mathrm{CMe}_{2}$) with $\mathrm{Ph}_{3} \mathrm{SnH}$ followed by destannylation provided 4f, whose ${ }^{1} \mathrm{H}$ NMR spectrum showed only one signal in the olefinic region at $\delta 4.99$. The complete disappearance of the higher field signal is consistent with a formation of single stereoisomer $4 \mathrm{e} .{ }^{13}$ The compounds $1 \mathrm{a}-\mathrm{d}$ and 3c provided cis-trans stereoisomeric mixtures concerning the
(12) (Triphenylstannyl)alkenes were easily transformed into alkenyllithium as (trialkylstannyl)alkenes following the procedure described in ref 5 .
(13) The structure of the cyclized product was also confirmed as follows. Treatment of $3\left(R=R^{1}=R^{2}=H\right)$ with our new method provided $4(32 \%$ yield) along with six-membered-ring product 3-(triphenylstannyl)methylenetetrahydropyran (45%). The vinylstannane 4 was converted into vinylsilane by treatment with n - BuLi and $\mathrm{Me}_{3} \mathrm{SiCl}$, which was identical with the sample prepared from allyl (trimethylsilyl) propargyl ether following Negishi's procedure (Negishi, E.; Cederbaum, F. E.; Takahashi, T. Tetrahedron Lett. 1986, 27, 2827. Negishi, E.; Holmes, S. J.; Tour, J. M.; Miller, J. A. J. Am. Chem. Soc. 1985, 107, 2568).

substituents on a five-membered ring. In contrast, the compound 7 gave trans isomer 8^{14} as a single product.

Scheme I illustrates the synthesis of dehydroiridodiol and isodehydroiridodiol. The triethylborane-induced triphenyltin radical addition-cyclization process provided vinylstannane 11 (84\%) starting from readily available propargylic alcohol 10. Collins oxidation of 11 gave 12 (54%). ${ }^{15}$ Diisobutylaluminum hydride reduction followed by treatment with p - TsOH provided a mixture of dehydroiridodiol ($3 R^{*}, 8 S^{*}$) and isodehydroiridodiol ($3 R^{*}, 8 R^{*}$) $(26 / 74,58 \%$ overall yield from 12$),{ }^{16}$ which was easily separated by preparative TLC on silica gel.

The reaction was not so effective for the formation of a sixmembered ring. For instance, treatment of $\mathrm{HC} \equiv$ $\mathrm{CCH}_{2} \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CMe}_{2}$ gave the desired cyclized product in only 28% yield along with uncyclized vinylstannane (49\%). An addition of galvinoxyl to a reaction mixture of 1 -dodecyne, $\mathrm{Ph}_{3} \mathrm{SnH}$, and $\mathrm{Et}_{3} \mathrm{~B}$ resulted in a recovery of the acetylene (73\%). ${ }^{17,18}$
(14) 8: bp $170^{\circ} \mathrm{C}$ (bath temp, 0.1 torr); IR (neat) $3062,2958,1619,1429$, $1075,727,697 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right) \delta 0.98(\mathrm{~d}, J=7.0 \mathrm{~Hz}$, $3 \mathrm{H}), 1.02(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.25(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 3 \mathrm{H}), 2.02(\mathrm{~m}, 1 \mathrm{H})$. $2.30(\mathrm{~m}, 1 \mathrm{H}), 3.95-4.25(\mathrm{~m}, 3 \mathrm{H}), 6.08(\mathrm{~m}, 1 \mathrm{H}), 7.3-7.8(\mathrm{~m}, 15 \mathrm{H}) ;{ }^{119} \mathrm{Sn}$ NMR $\delta-142.6$. Anal. Calcd for $\mathrm{C}_{27} \mathrm{H}_{30} \mathrm{OSn}: \mathrm{C}, 66.29: \mathrm{H}, 6.18$. Found: C, 66.43; H, 6.29.
(15) 12: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right) \delta 0.67(\mathrm{~d}, J=7.0 \mathrm{~Hz}), 0.72(\mathrm{~d}$, $J=7.0 \mathrm{~Hz}), 0.94(\mathrm{~d}, J=2.5 \mathrm{~Hz}), 0.97(\mathrm{~d}, J=2.5 \mathrm{~Hz}$, total 3 H$), 1.4-2.0$ $(\mathrm{m}, 8 \mathrm{H}), 2.14(\mathrm{brs}, 3 \mathrm{H}), 2.2-2.7(\mathrm{~m}, 3 \mathrm{H}), 3.0-4.0(\mathrm{~m}, 5 \mathrm{H}), 4.5-4.7(\mathrm{~m}$, $1 \mathrm{H}), 10.0(\mathrm{~s}, 1 \mathrm{H})$.
(16) Sakai, T.; Nakajima, K.; Yoshihara, K.; Sakan. T.; Isoe, S. Tetrahedron 1980, 36, 3115 . Kimura, H.; Miyamoto, S.; Shinkai, H.; Kato, T. Chem. Pharm. Bull. 1982, 30, 723.
(17) The organoboranes are known to be excellent sources of free radicals.

Brown, H. C.; Midland, M. M. Angew. Chem., Int. Ed. Engl. 1972, I1, 692.
(18) After this work was completed we were informed by Professor G.

Stork that he has reached a similar cyclization reaction. We thank Prof. G
Stork for giving us information prior to publication.

Synthesis and Characterization of Five-Coordinate High-Spin Iron(II) Porphyrin Complexes with Unusually Large Quadrupole Splittings. Models for the P460 Center of Hydroxylamine Oxidoreductase from Nitrosomonas
H. Nasri, J. Fischer, and R. Weiss*

> Institut le Bel, ${ }^{1}$ Universite Louis Pasteur 67070 Strasbourg, France

E. Bill and A. Trautwein

Institut fur Physik, Medezinische Universität Ratzeburger Allee 160, D. 2400 Lübeck 1,FRG

Received November 3, 1986

Hydroxylamine oxidoreductase from Nitrosomonas europeae catalyses the oxidative conversion of $\mathrm{NH}_{2} \mathrm{OH}$ to $\mathrm{NO}_{2}{ }^{-2}$. The enzyme, which has an $(\alpha, \beta)_{3}$ subunit containing seven-eight c-type hemes contains also an unusual prosthetic group, termed P460. This P460 center is also found in a $M_{\mathrm{r}} \simeq 17000$ protein fragment. Mössbauer spectra of the reduced P460 groups in hydroxylamine oxidoreductase and the fragment exhibit nearly identical quad-

Table 1. Electronic Spectra of Complexes 1, 2, and 3 at $25^{\circ} \mathrm{C}$ in Chlorobenzene

	$\lambda_{\mathrm{m}}(\log \epsilon), \mathrm{nm}$
$\mid \mathrm{Fe}\left(\mathrm{OCH}_{3} \mathrm{TP}_{\text {pir }} \mathrm{P}^{-} \mathbf{1}\right.$	
$\left\|\mathrm{Fe}\left(\mathrm{O}_{2} \mathrm{CCH}_{3}\right) \mathrm{TP}_{\mathrm{p} i v} \mathrm{P}\right\|^{-} \mathbf{2}$	$456(4.83), 580(3.86), 622(3.71)$
$\left\|\mathrm{Fe}\left(\mathrm{OC}_{6} \mathrm{H}_{5}\right) \mathrm{TP}_{\mathrm{piv}} \mathrm{P}\right\|^{-} \mathbf{3}$	$450(5.32), 572(4.22), 611(3.81)$

[^0]: (17) DePamphilis, B. V.; Averill, B. A.; Herskovitz, T.; Que, L., Jr.; Holm, R. H. J. Am. Chem. Soc. 1974, 96, 4159.
 (18) $\mathrm{R}_{1}, 2.22$ (p-Me), 6.81 (meta H), 7.12 (ortho H); $\mathrm{R}_{2}, 3.86$ (4-Me), $3.88(2-\mathrm{Me}), 5.05(\mathrm{br}, 6-\mathrm{H}) .8 .22(3-\mathrm{H}) \mathrm{ppm}\left(\mathrm{CD}_{3} \mathrm{CN}, 25^{\circ} \mathrm{C}\right)$.
 (19) Kanatzidis, M. G.; Baenziger, N. C.; Coucouvanis, D.; Simopoulos, A.; Kostikas, A. J. Am. Chem. Soc. 1984, 106, 4500.
 (20) Reynolds, J. G.; Laskowski, E. J.; Holm, R. H. J. Am. Chem. Soc. 1978, $100,5315$.
 (21) Stack, T. D. P.; Holm, R. H., unpublished results.
 (22) Beinert, H.: Emptage, M. H.; Dreyer, J.-L.; Scott, R. A.; Hahn, J. E.; Hodgson, K. O.: Thomson, A. J. Proc. Natl. Acad. Sci. U.S.A. 1983, 80 , 393.
 (23) Girerd, J.-J.: Papaefthymiou, G. C.; Watson, A. D.; Gamp, E.; Hagen, K. S.; Edelstein, N.; Frankel, R. B.: Holm, R. H. J. Am. Chem. Soc. 1984, 106, 5941.
 (24) Hagen. K. S.: Watson, A. D.; Holm, R. H. J. Am. Chem. Soc. 1983, 105, 3905.

[^1]: (1) Stork, G. Selectivity-A Goal for Synthetic Efficiency; Bartmann, W., Trost, B. M., Eds.; Verlag Chemie: Weinheim, 1984; p 281. Stork, G.; Mook, R., Jr. Tetrahedron Lett. 1986, 4529. See also: Stork, G.; Mook, R., Jr. J. Am. Chem. Soc., in press.
 (2) Free radical reactions have been used increasingly in recent years for the synthesis of organic molecules. Reviews: (a) Barton, D. H. R.; Crich, D.; Motherwell, W. B. Tetrahedron 1985, 41, 3901. (b) Giese, B.; Horler, H. Ibid. 1985, 41, 4025. (c) Hart, D. Science (Washington, DC) 1984, 223, 883. (d) Kraus, G. A.; Landgrebe, K. Tetrahedron 1985, 41, 4039.
 (3) (a) Stork, G.; Baine, N. H. J. Am. Chem. Soc. 1982, 104, 2321. (b) Stork, G.; Mook, R., Jr. Ibid. 1983, 105, 3720 . (c) Stork, G.; Sher, P. M. Ibid. 1983, 105, 6765. (d) Porter, N. A.; Magnin, D. R.: Wright, B. T. J. Am. Chem. Soc. 1986, 108, 2787. (e) Curran, D. P.; Chen, M.-H.; Kim, D. Ibid. 1986, 108, 2489. (f) High dilution favors the intramolecular radical cyclization. Ueno, Y.; Chino, K.; Okawara, M. Tetrahedron Lett. 1982, 23, 2575. See, however: Stork, G.; Mook, R., Jr., communication in this issue.
 (4) (a) Leusink, A. J.; Budding, H. A.; Marsman. J. W. J. Organomet. Chem. 1967, 9, 285. (b) Leusink, A. J.; Budding, H. A.: Drenth, W. Ibid. 1967, 9, 295.
 (5) Corey, E. J.; Ulrich, P.; Fitzpatrick, J. M. J. Am. Chem. Soc. 1976, 98, 222. Corey, E. J.; Wollenberg, R. H. J. Org. Chem. 1975. 40, 2265.

[^2]: (6) $i-\mathrm{Pr}_{3} \mathrm{~B}$ and $\left(n-\mathrm{C}_{8} \mathrm{H}_{17}\right)_{3} \mathrm{~B}$ were as effective as $\mathrm{Et}_{3} \mathrm{~B}$. We thank Toyo Stauffer Chemical Company for a gift of a hexane solution of $\mathrm{Et}_{3} \mathrm{~B}(1.0 \mathrm{M})$.
 (7) In the case of uncatalyzed hydrostannation, the E / Z ratios depend on the reaction temperature as described in ref 5 . Heating a mixture of 1 -dodecyne and $\mathrm{Ph}_{3} \mathrm{SnH}$ at $80^{\circ} \mathrm{C}$ for 1.5 h gave a mixture of (E) - and $(Z)-1-$ (triphenylstannyl)-1-dodecene ($E / Z=22 / 78$) in 53% combined yield. A mixture of E and Z isomer ($E / Z=75 / 25,65 \%$ yield) was obtained after 5 h at $150^{\circ} \mathrm{C}$.
 (8) Transformation of $1 a$ into $2 a$ is representative. A hexane solution of $\mathrm{Et}_{3} \mathrm{~B}(1.0 \mathrm{M}, 0.2 \mathrm{~mL}, 0.2 \mathrm{mmol})$ was added to a solution of $\mathrm{Ph}_{3} \mathrm{SnH}(0.42$ $\mathrm{g}, 1.2 \mathrm{mmol})$ and the acetylene $1 \mathrm{a}(0.15 \mathrm{~g}, 1.0 \mathrm{mmol})$ in toluene $(100 \mathrm{~mL})$ at $25^{\circ} \mathrm{C}$ under an argon atmosphere. After stirring for 3 h at $25^{\circ} \mathrm{C}$, the reaction mixture was poured into water and extracted with ethyl acetate. Purification by preparative TLC on silica gel gave the cyclized product 2a ($0.37 \mathrm{~g}, 75 \%$ yield) as a stereoisomeric mixture ($78 / 22$): IR (neat) 3566 , $3058,2954,1428,1195,1073,727,698 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 200 \mathrm{MHz}$) $\delta 0.84(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 3 \mathrm{H}), 0.96(\mathrm{~s}, 3 \mathrm{H}), 1.00(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 3 \mathrm{H}), 1.2-2.1$ $(\mathrm{m}, 5 \mathrm{H}), 2.64(\mathrm{~m}, 1 \mathrm{H}), 6.03(\mathrm{~d}, J=2.2 \mathrm{~Hz}$, for minor compound), $6.10(\mathrm{~d}$, $J=2.2 \mathrm{~Hz}$, for major compound, total 1 H), $7.25-7.80(\mathrm{~m}, 15 \mathrm{H})$; ${ }^{119} \mathrm{Sn}$ NMR $\delta-147.8$ (minor), -150.2 (major). Anal. Calcd for $\mathrm{C}_{28} \mathrm{H}_{32} \mathrm{OSn}$: C , $66.83, \mathrm{H}, 6.41$. Found: $\mathrm{C}, 66.71 ; \mathrm{H}, 6.34$. In the case of $\mathbf{1 b}$, six-mem-bered-ring product, 1 -methyl-2-(triphenylstannyl) methylene-1-cyclohexanol, was also obtained (31% yield) in addition to $\mathbf{2 b}$.

